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Abstract 

Methods for automatic structure determination 
[Pavel~fk (1988). Acta Cryst. A44, 724-729] have been 
extended by routines utilizing Patterson peaks and a 
new version of the XFPS computer program [Pavel- 
~fk, Rizzoli & Andreetti (1990). Univ. of Parma, Italy, 
and Komensky Univ., Bratislava, Czechoslovakia] has 
been developed. The results of test calculations were 
compared with those of SHELXS86 [Sheldrick 
(1986). Univ. of GSttingen, Germany]. About 80% of 
heavy-atom structures can be solved automatically. 

Introduction 

The XFPS computer program (Pavel~fk, 1986) was 
developed to perform semiautomatic calculations of 
a sharpened Patterson function, an atomic minimum 
superposition, a symmetry minimum function and 
various types of Fourier syntheses. The program is 
able, in an ideal case, to solve a heavy-atom structure 
in a single computer job with a sequence of instruc- 
tions supplied by the user. Recently, the program has 
been extended by new routines such as a symmetry 
sum function (Pavel~fk, 1989a), second- and third- 
order symmetry minimum functions, cross-vector and 
full-symmetry minimum translational functions 
(Pavel~,fk, 1988, 1991) and by an expert routine con- 
trolling a fully automated structure determination. 
The serious drawbacks of the automated procedure 
were: an oversimplified algorithm for solving struc- 
tures in space groups P1, Pc, Pm, Cc and Cm; some 
errors in a procedure for generating the symmetry of 
the multiple implication function (Zimmermann, 
1988; Pavel~fk, 1990); and a restriction to use only 
on mainframe computers. 

In this paper some new approaches to the Patter- 
son deconvolution are described. These new methods 
are based on simultaneous use of the peaks of the 
symmetry minimum function, the Patterson peaks and 
the stored Patterson function. The XFPS program 
has been reorganized and developed as a program 
for fully automatic structure determination of heavy- 

0108-7673/92/060791-06506.00 

atom compounds for both mainframe and personal 
computers (Pavel~ik & Siva,, 1989; Pavel~fk, Rizzoli 
& Andreetti, 1990; Pavel~fk, Siva, Rizzoli & Andreetti, 
1992). 

Procedures 

Improvement of basic procedures 

The Patterson synthesis, symmetry minimum func- 
tion (SMF), atomic minimum superposition and 
Fourier syntheses are calculated as described pre- 
viously (Pavel~fk, 1986). The sharpening function has 
been changed to a function of two parameters, 

[Fo[2s--[Fo[2(1-Fas 2) exp ( b s 2 ) / ( ~  f / ) ,  (1) 

where s = (sin O)/A, f~ is the scattering curve and a 
and b are sharpening parameters. The Patterson peaks 
are output with heights, H',  scaled by 

H'= H ~, Z2/ P(000). (2) 
i 

H and P(000) are the peak height and the origin of 
the Patterson function on an arbitrary scale, respec- 
tively; Zi are atomic numbers. The output peak 
heights are in this way related to the product of their 
atomic numbers. The lengths of the Patterson vectors 
are also given as output. 

For the Patterson or Fourier synthesis, a grid, 
given by the interlayer separation, res, is calculated by 

res=(dmin/3)(Nunique/Nobs) 1/3, (3) 

which reflects both the maximum diffraction angle 
and the quality of an experiment. 

Symmetry 

User-oriented programming requires program 
input to be as simple as possible. This led us to 
develop a computer routine that for generating 
equivalent positions requires only a space-group 
number as given in International Tables for 
Crystallography (1989). 

O 1992 International Union of Crystallography 
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Various cell axes and origin selections (Interna- 
tional Tables for Crystallography, 1989) are further 
restricted: The unique axis in a monoclinic cell is b; 
the centre of symmetry is at the cell origin; a rhom- 
bohedral cell is in the hexagonal setting only. The 
group elements are obtained with the help of the 
space-group generators (Wondratschek, 1989) but the 
number of generators is kept to an absolute minimum 
of three (excluding the lattice translations and the 
centre of symmetry). The first generator is the 1, 2, 
4 +, 4+, 3 +, 6 + or 6+ axis parallel to the z direction 
and the translation vector is given as (tx/4, ty/4, tz/4) 
or (0,0, tz/6) for hexagonal axes. The second 
generator is (s~x+ tl/4, s2y+ t2/4, s3z+ t3/4) or 
(sly, s2x, s3z + t3/6) for trigonal or hexagonal systems, 
related to a direction different from z. The s~ are + 1 
or -1 .  The third generator is a threefold body- 
diagonal rotation axis indicating a cubic group. 

The symmetry of any space group can be packed 
into 32 bits. The following items are stored for each 
space group: code for the lattice type P, /, R, F, A, 
B, C (3 bits), code for the centre of symmetry (1 bit), 
code for the rotation matrix of the first generator (3 
bits), tx, ty, tz (7 bits), sl, s2, s3, tl, t2, t3 (10 bits) 
and code for the third generator (1 bit). 

The subroutine of the crystal symmetry generator 
(in Fortran77) represents only 70 lines, of which 29 
lines are data definition containing 230 INTEGER*4 
words of packed symmetry information (the routine 
has also been developed as an independent program, 
XSPGR, available on request, suitable for other crys- 
tallographic programs as well as for the teaching of 
space groups). 

Preselection routines 

The SMF gives in some cases correct peaks buried 
among background peaks. This is particularly true 
for structures with intermediate heavy atoms such as 
C1, P or S in organic compounds. Also, quasispecial 
coordinates (e.g. 0.5, 0.25) often lead to ambiguous 
interpretation of the Harker vectors and to spurious 
peaks in the SMF. In such cases preselection func- 
tions are useful to suppress the false peaks of the 
SMF. The preselection routines are based on the 
second- or third-order symmetry minimum function, 
denoted the SOSMF (Pavel~ik, 1988). Because full 
three-dimensional calculation of such a function 
would be computationally demanding, two fast 
approximations to this function were developed. The 
equivalent origin approximation has already been 
described (Pavel~fk, 1988). 

Another approximation based on the Patterson 
peaks is presented here. The SOSMF can be reformu- 
lated as a figure of merit for peaks r~ of the SMF 
(potential atoms) as 

H(ri)  = ~ min P [ r , -  (R~x+ts)] dx, (4) 
V s 

where Rs are rotational and t~ translational parts of 
the symmetry operators, respectively. From another 
point of view this function can be regarded as a 
cumulative function (Ramachandran & Srinivasan, 
1970) of the atomic minimum superposition. The 
Patterson peak approximation is given by 

H(r,)  = ~  min P[ri--(R~Xk,+L)], (5) 
k s 

where Xki = r~+Uk and Uk are Patterson peaks. The 
summation is over all Patterson peaks higher than a 
product of atomic numbers of the lightest heavy atom. 
If Uk is a cross vector belonging to atom r~ and another 
atom in the structure, then an important contribution 
is expected. A weighted modification of this function 
can be written as 

The first two terms represent self-vectors. All the 
required Patterson values can be easily obtained from 
a stored Patterson function by a look-up table. In 
contrast to the equivalent-origin approximation, this 
approach is applicable to all space groups and is 
particularly useful for the Pc, Pro, Cc, R3, R3c and 
R3m space groups. 

Another preselection routine is based on R-factor 
calculation using E values. The Ri(E) factors for 
individual peaks are calculated by Pavel~ik (1988). 
If the number of input peaks is twice (or more times) 
the number of heavy atoms then it is possible to delete 
some false peaks by selecting only peaks for which 

Ri(E) <- 0.99(R (E)). (7) 

Generators of atomic fragments 

Once (preselected) peaks of the SMF are known, 
the next step in the Patterson deconvolution is to 
build tentative heavy-atom fragments. This is usually 
a multisolution process. To build a fragment, one 
peak (the pivot peak) of the SMF is fixed. The frag- 
ment can be built either by equivalent origin shifts 
applied to the peaks of the SMF (Pavel~k, 1988) or 
by a new fragment generator utilizing Patterson peaks, 
which is described here. This method is suitable for 
low-symmetry space groups with an infinite number 
of equivalent origins in one or two dimensions. For 
a given pivot peak ri of the SMF, the tentative atomic 
positions are generated by 

rj = ri + RsUk, (8) 

where u k are Patterson peaks in the asymmetric part 
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of the Patterson function. The atomic position is 
accepted only if equations 

P ( r j -  Rsrj-ts) > elim (9) 

and 

P ( r j -  R s r , - L )  > Plim (10) 

are satisfied for all symmetry operators. This means 
that all self- and cross-vectors must be greater in 
magnitude than a preselected value. 

In the space group P1 the SMF is reduced to a 
single point and no symmetry can be used for Patter- 
son deconvolution. The algorithm was modified 
accordingly. In P1 the heaviest atom is fixed at the 
origin. A pivot atom is fixed by one Patterson peak, 
u~ (all high peaks are successively used as pivot peaks 
in the multisolution process). All other Patterson 
peaks, Uk, are tried as possible atomic positions. The 
atom position is accepted only if 

P(Uk) > Plim (11) 

and 

P(u,--Uk) > Plim- (12) 

The fragment generated by any of the generators 
forms the input into the cross-vector function. The 
advantage of using combined SMF peaks, Patterson 
peaks and a stored Patterson function, in comparison 
to methods using Patterson peaks only, is that the 
appearance of only one symmetry-related cross- 
vector as a Patterson peak is sufficient to generate a 
tentative atomic position (other symmetry-related 
cross-vectors may be in the overlapped regions). 

Cross-vector functions 

In fragment generators, only cross-vectors between 
the pivot atom and potential new atoms are checked. 
In the cross-vector function all cross-vectors among 
all atoms of the fragment are checked and atoms 
having no or only weak cross-vectors are removed 
from the atom list. One cross-vector function has 
already been described (Pavel~fk, 1988). This pro- 
cedure has recently been slightly modified in such a 
way that atoms generated from the same peak of the 
SMF (in the fragment generated by equivalent origin 
shifts) may be treated optionally as independent 
atoms. This may help to solve structures with atoms 
in special or quasispecial positions (pseudosymmetry, 
translational ambiguity). 

Another cross-vector function, called the weighted 
cross-vector function, is described here. This alterna- 
tive was developed for structures in which the back- 
ground level in the normalized Patterson function 
approaches the product of atomic numbers of heavy 
atoms (e.g. organic molecules with C1, P, S as heavy 
atoms). For atoms in the fragment, a table of 
all symmetry-minimum interactions, SMI or Iv, 

(Pavel6fk, 1988) is calculated. Instead of fixing the 
best cross-linked atom as in the unweighted cross- 
vector function, the atom that is not well cross-linked 
is deleted from the atom list. This is done in the 
following way. For each atom, a sum of the SMIs is 
calculated, 

ZZ, = Y, I v. (13) 
J 

In the next step, the weighted characteristic is given 
by 

wZZ, = ~ ZZjI~j. (14) 
J 

The weighted sum is high for groups of atoms that 
are all well linked. The atom with the smallest value 
of wZZi is deleted from the atom list and the ZZi are 
recalculated. The process is repeated until the number 
of atoms in the fragment is equal to the number (max) 
supplied by user. 

R (Patt) factor 

Each solution of the Patterson function given by 
the cross-vector function is subject to an R-factor 
calculation. Because of the small size of a fragment 
(two or three heavy atoms in general), the Patterson- 
function-derived R factor is preferred. Patterson- 
function values are influenced only by given cross- 
vectors and accidental overlaps (local character) and 
they are less affected by the unknown part of the 
structure than the I F 2 values. The Patterson vectors 
are generated for all atoms in the unit cell, UVkt = 
(Rkri + t k ) -  (Rtrj +tt),  where k, I represent symmetry 
operations 

g(Patt)=E[Po-Pcl/Y'.Po. (15) 

P0 are values of the normalized Patterson function. 
The Pc are calculated from the atomic numbers. The 
overlap of atoms is taken into account (some vectors 
are overlapped due to symmetry), 

Pc=~ ZiZj exp(-Ar2/hw~). (16) 
J 

Summation is over all overlapping vectors and 
Ar v is the distance between vectors. The factor 
exp (-ArE/hws) is an empirical function; hw~ is the 
parameter given by 

hw~=[P(OOO)/P~(OOO)]2/ahwo. (17) 

P(000) and Ps(000) are origin peaks of the un- 
sharpened and sharpened Patterson functions respec- 
tively, hwo is an empirical constant related to the 
half-width of the unsharpened Patterson peak at the 
origin and the constant was set to hw0 = 0.25/~2. 

Automatic procedure 

The general strategy for structure determination is 
the same as decscribed previously (Pavel~fk, 1988). 
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Considerable improvements were achieved for space 
groups in which the origin is not fixed by the symmetry 
in one or two dimensions. In this case the superposi- 
tion based on a single Patterson vector was replaced 
by four procedures. These are: the SOSMF in the 
Patterson peak approximation; the fragment gen- 
erator based on Patterson peaks; the cross-vector 
function; and the atomic minimum superposition. In 
the space group P1 with three or more heavy atoms 
in the cell, the simple superposition was replaced by 
a special routine described above and by multiple- 
atom superposition. The overall strategy is shown in 
Fig. 1. 

Test calculations and discussion 

The parameter b of the sharpening function (1) was 
optimized to give the best result in the superposition. 
The optimization seems to be more important for 
structures with intermediate heavy atoms. The 
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Fig. 1. Flow chart of the automatic structure determination. SMF: 
symmetry minimum function; WVS: weighted vector super- 
position; SOSMF: second-order symmetry minimum function; 
EOA: equivalent-origin approximation with fragment generator 
by equivalent-origin shift; PPA: Patterson peak approximation 
with fragment generator by Patterson peaks; CVF: cross-vector 
function; AMS: atomic minimum superposition. Y: yes; N: no. 

Table 1. Crystal data for heavy-atom structures and 
results of  automatic solution 

XFPS option SOLV and SHELXS86 option PATI'. Y: solved; N: 
not solved. 

Space Refer-  
C o d e  group Formula  Z XFPS  SHELXS86  ence 

BAVO P212z21  Ba(VO3)2.H20 4 Y N I 
FUNG P c c n  Ct.TH22CIN204PS 2 8 Y N 2 
HAVE P2t/c CTHIsN2OTP 4 Y N 3 
HAVE P21 CTHtsN2OTP 4 N N 3 
HAVE Pc CTHtsN2OTP 4 Y N 3 
PYOX P1 Ct4HI2C14CuN20 6 2 Y N 4 
PYOX P1 CI4HI2CI4CuN206 2 Y N 4 
CUSA P i  CITHt3CtIKN203S 2 Y Y 5 
BETA C2/c ClaH29CIN20 5 8 Y N 6 
KEID PI  Ct4H24CoKN4OI2 2 N Y 7 
CUIM P2Jc CI3HIGCUN303 4 Y Y 8 
CUMOS C2/c C36H~sCu2MoN2S 6 4 Y Y 9 
MGHEX P3 t CsGHs0CI2MgNtGO2o 3 N N 10 
AZET Pca2 t C2tHtGCINO 8 N N 10 
APAPA P4t212 C3oHagNIsO22P 2 8 N N 10 
BOBBY P2t3 C6H6CaNNaO 6 4 Y Y 10 
SELENID P2 t C22H2sO2Se 2 Y Y 10 
MORF P2t/c CTHHCIaN202 4 Y Y 11 
DAMO P b c a  C15HsoB4Cu2FIGNIo 8 Y N 12 
VULM P2t212 t CtsH3oCINO2 4 Y Y 13 

References: [1] Ulick~, Pavel~fk & Huml (1987); [2] V~bel, Pavel~fk, KellG, Miertug, 
Kone~:n~ & Lokaj (1987); [3] Pavel/~fk, Havetta & Paterek (1989); [4] Paveli~fk, Zemli/~ka, 
Kettmann & Kr/itsrmir-~mogrovi~ (1987); [ 5 ] Siva, Pavel~t'k, Kr/itsmhr-Smogrovi~, ~em- 
li~ka & Seressova (1990); [6] Kettmann & CsiJllei (1989); [7] Paveli~fk, Novomesky, 
Sold~fnov~ & Polynova (1988); [8] Siva, Plesch, Kr~tsm~r-gmogrovi~, Svajlenova & 
Kettmann (1989); [9l Acott, Garner, Nicholson & Clegg (1983); [10] Sheldrick (1982); 
[ 11 ] Vr~ibel, Pavel~fk, KellG, Miertug, KoneGn~ & Lokaj (1985); [ 12] Siva, Valach, Korefi, 
Ma~gkov~i, P a v e l ~  & Siv~ (1989); [13] Kettmann, Pavel~ik, Majer & Ryb~ir (1989). 

Table 2. Crystal data for non-heavy-atom structures 

Space 
C o d e  group Formula  Z Reference  

LILI P2t212 t CIoHNN202 4 14 
SUAC P2t2t2 t C27H38OI2 4 15 
DIAM P42/n CNH2oO 8 10 
DIOL I42d CtoHt80 2 16 10 
BED 14 C26H26N404 8 10 
NO55 Fdd2 C20H24N 4 16 10 
TPH C222 t C24H2oN2 12 I 0 
TURIO P6322 C 151-12402 12 I 0 
IUCR6 P6122 C2OS 6 16 
1UC R7 I43 d C 16036S48 1 16 

References: [10] Sheldrick (1982); [14] P a v e l ~  (1989b); [15] Pave l~ ,  Havetta & 
Such~ (1985); [16] Ahmed, Cruickshank, Larson & Stewart (1972). 

optimization for VULM (Table 1) in which superposi- 
tion is based on four C1 atoms gave optimum results 
at b = - 1  and optimization for LILI (Table 2), with 
superposition based on eight light atoms, gave 
optimum results at b = 2, indicating that light struc- 
tures correspond to a possibility of higher sharpening. 
Parameter a was fixed at 6, as recommended by 
Jacobson (1970). 

The XFPS program has been tested on structures 
of various symmetry, unit-cell content and complexity 
and compared with SHELXS86 (Sheldrick, 1986) 
[based on SHELX84 (Sheldrick, 1985)]. The tests for 
mainframe XFPS89 (and mainframe SHELXS86) are 
given in Table 1. Some parts of the program were 
also tested on structures not containing heavy atoms 
because we did not have enough heavy-atom test 
structures for higher symmetry and rare space groups. 
These are given in Table 2. Comparison of symmetry 
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Table 3. Results and comparison o f  symmetry 
minimum function, SMF,  symmetry sum function, SSF, 
and symmetry sum function with origin-removed Patter- 

son function, S S F O R  

Heavy  
C o d e  a toms  SM F SSF S S F O R  

BAVO Ba, 2V 2, 5, 8 l, 4, 7 1, 4, 7 
FUNG CI, 2S, P 1,2,24,31 6,46,77,79 6,53,66,81 
PYOX Cu, 4CI 3,27,32,34,65 2, 18, 26, 33, 40 1, 17, 26, 31, 32 
CUSA Cu, K, S 3, 26, 46 2, 24, 40 2, 26, 36 
MORF 3C1 2,6,10 2,4,14 2,4,17 
DAMO 2Cu 1, 2 4, 6 4, 6 
KEID 2Co 1 1 2 
CUMOS Mo, Cu, 3S 1,3,7, 18,22 3, 12,36,44,66 3,9,36,42,69 
AZET 2CI 1, 7 2, 9 2, 8 
APAPA 2P 2, 9 4, 16 2, 9 
BOBBY Ca, Na 1 I 1 

Table 4. Results for  the second-order symmetry 
minimum function 

EO: equivalent-origin approximation; EOC: equivalent-origin 
approximation followed by convergence-function searching for 
max. atoms (max. is number of atoms in the asymmetric part of 
the unit cell plus 1); PP: Patterson peak approximation; PPW" 
weighted Patterson peak approximation. 
Values in brackets are numbers in the peak list that were deleted 
by the procedure or that have zero contribution. 

C o d e  EO EOC PP P P W  

BAVO 1,2,4 1,2,4 1,3,6 2,3,5 
FUNG 1,2,5,16 1,2,4, (33) 1,2,5,15 2,3,8,9 
PYOX 3,4,11,14,56 4, (10,11,25, 50) 3,23,27,37 2,19,20,(37) 
CUSA 1,2,3 1,2,3 1,2,3 1,2,3 
MORF 1,2,3 1,2,3 1,2,(16) 1,2, (16) 
DAMO 1, 2 1, 2 1, 2 1, 2 
KEID - l 1 
CUMOS 1,2,5,7, l0 1, 2, 3, 4, (7) 1,2,5,7,9 1,2, 5,6,7 
AZET 1, 8 2, (1 I) 1,15 1,15 
APAPA 9, 94 (19, 94) 4, 33 4, 5 
BOBBY - 1 1 

Table 5. Crystal data for  heavy-atom structures and 
results o f  automatic solution with the PC version 

o f  X F P S  

XFPS option SOLV and SHELXS86 option PA'I-I" were used. 
Y: solved; N: not solved. 

Space  Refer-  
C o d e  g roup  F o r m u l a  Z XFPS SHELXS86 ence  

ES67A P2t/c CI3HtgCI6Ta 2 Y Y 17 
ES67 P2t/c Ct3HI9CI6Ta 4 Y Y 17 
FCI014 I422 CI76H2oaO2oW4 i Y Y 17 
FC999 P4/n C95Ht 14OloW 1 Y Y 17 
FC969 C2/c Ct2sHit2032Wa 1 Y Y 17 
MCO Fd3m MnCr20 a 8 Y N 18 
STR P2t/c C3oHt3Co2FeMnOtl 4 Y N 19 
PV206 P2t/n C3sH34N2Zr 8 Y N 20 
PV214 PI C2aH22CIOZr 2 Y Y 20 
PV213 P]  C68HIooK2N4Ot6 1 Y N 20 
JRI71 P]  Cs7H63NaO4V 2 Y Y 20 
JRI43 P2t/c C36H6oN4V2 4 Y N 20 
TC107 P2Jn C24H2sMo2OsTi 2 2 Y Y 20 
PV220 P2t /c  C29H22CICrO6PZr 4 Y Y 20 
PV216 Cc C29H22C1CrNO6Zr 4 Y Y 20 
JRI93 PI C56HssN2024Zr 1 N N 20 
WL480 P1 C58Hs4CI2OsTi 2 2 N N 20 
FC955 P2t/n C64HToCI2OaW 4 Y N 20 
ZAGA11 P i  C2sH38CI2N206P2Pd ! Y Y 21 

References: [17] Rizzoli (1990); [18] Bocelli (1990); [19] Bocelli & Sterzo (1990); [20] 
Chiesi-Villa, Guastini & Rizzoli (1990); [21] Matija~i6 (1990). 

minimum funct ions and symmetry  sum funct ions are 
given in Table 3 and results of  testing of  preselect ion 
routines on the ma in f rame  are given in Table 4. In 
these tests the Pat terson funct ion was calculated with 
an interlayer separa t ion of  0.25 A. For  the S O S M F  
the peaks higher  than  0.SZ were used,  but  the 
max imum number  of  peaks  was limited to 100 ( Z  is 
the atomic number  of  the lightest heavy a tom con- 
sidered).  The results of  test calculations pe r fo rmed  
with the M S - D O S  PC version are given in Table 5. 
The efficiency of  a fully au tomated  structure determi- 
nat ion with X F P S  (option SOLV) was compared  with 
the results of  S H E L X S 8 6  M S - D O S  (option PATT).  
The results of  the fully au tomated  structure determi- 
nations are quite encouraging,  but  there is still a place 
for fur ther  development .  

The authors  are grateful  to Dr  J. Ha~ek for G. M. 
Sheldrick's  file of  test structures and to Professor  A. 
Villa-Chiesi and Drs G. Bocelli and C. Rizzoli for 
test structures.  FP thanks  the University of  Pa rma  for  
financial support .  The copy of  International Tables 
for  Crystallography, Vol. A, which helped in the 
development  of  the symmetry-generat ing routine,  was 
a gift of  the In ternat ional  Union of  Crys ta l lography 
to FP through Dr  K. Huml.  We are grateful for that  
gift. 
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Abstract 

An incommensura te  phase with one-d imens iona l  
(1 D) incommensura te  composite  structure newly dis- 
covered in an A1-Cu-Fe  alloy coexists with the struc- 
turally related commensura te  phase. Both of  them 
can be descr ibed as a phason-defected 1 D fictitious 
quasicrystal.  The 1D quasicrystal  is obtained by cut- 
ting a s ix-dimensional  (6D) crystal with physical  
space. With the increase of  a part icular  l inear  phason  
strain, the section of  the 6D crystal transfers firstly 
to the incommensura te  phase and then to the com- 
mensurate  phase.  

1. Introduction 

There are different types of  incommensura te  struc- 
tures, for example ,  incommensura te  modula ted  struc- 
ture (de Wolff, 1974), incommensura te  composi te  
structure (Janner  & Janssen,  1980) and quas iper iodic  
structure (Shechtman,  Blech, Gratias & C a h n  1984). 

* This project is supported by the National Natural Science 
Foundation of China. 

They can easily be dis t inguished one from another  
by means  of  diffraction data. The diffraction peaks 
of  an incommensura te  modula ted  structure can be 
divided into two groups: main  peaks and satellite 
peaks. The main  peaks form a periodic lattice that 
corresponds to the average structure and each main  
peak is accompanied  by satellite peaks. The incom- 
mensurate  composite  structure consists of  two or 
more substructures. Each of  them gives an indepen-  
dent set of  periodic diffraction peaks to form the 
major  reflections. The minor  reflections originate 
from the mutua l  interact ion among different substruc- 
tures. In this sense, both incommensura te  modula ted  
structures and incommensura te  composite structures 
are to some extent related to three-dimensional  (3D) 
periodicity. The quasicrystal  possesses quasiper iodic-  
ity in both real and reciprocal spaces that is not related 
to 3D periodici ty (Schechtman et al., 1984). Thus far, 
the incommensura te  modula ted  structure, the incom- 
mensurate  composite  structure and the quasicrystal  
structure are recognized as completely different 
incommensura te  structures and no informat ion  about  
the structural re lat ionship among them has been 
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